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Abstract. We have examined the role of the BCS pairing mechanism in the formation of the magnetic
moment and henceforth a spin glass (SG) phase by studying a fermionic Sherrington-Kirkpatrick model
with a local BCS coupling between the fermions. This model is obtained by using perturbation theory
to trace out the conduction electrons degrees of freedom in conventional superconducting alloys. The
model is formulated in the path integral formalism where the spin operators are represented by bilinear
combinations of Grassmann fields and it reduces to a single site problem that can be solved within the
static approximation with a replica symmetric ansatz. We argue that this is a valid procedure for values of
temperature above the de Almeida-Thouless instability line. The phase diagram in the T–g plane, where
g is the strength of the pairing interaction, for fixed variance J2/N of the random couplings Jij , exhibits
three regions: a normal paramagnetic (NP) phase, a spin glass (SG) phase and a pairing (PAIR) phase
where there is formation of local pairs.The NP and PAIR phases are separated by a second order transition
line g = gc(T ) that ends at a tricritical point T3 = 0.9807J , g3 = 5, 8843J , from where it becomes a first
order transition line that meets the line of second order transitions at Tc = 0.9570J that separates the NP
and the SG phases. For T < Tc the SG phase is separated from the PAIR phase by a line of first order
transitions. These results agree qualitatively with experimental data in GdxTh1−xRU2.

PACS. 05.50.+q Lattice theory and statistics; Ising problems – 64.60.Cn Order disorder transformations;
statistical mechanics of model systems

1 Introduction

Experimental evidence in cuprate superconductors [1] ex-
hibit a very rich phase diagram that includes structural,
antiferromagnetic, insulator-metal, superconducting and
spin glass transitions, that depend strongly on the dopant
concentration. The coexistence of spin glass ordering and
superconductivity has been also observed in conventional
superconductors doped with magnetic impurities [2]. The-
oretical studies of conventional spin glass superconductors
have focused in calculations of the superconducting den-
sity of states in the presence of localized magnetically or-
dered impurities. These systems are well described [3] by
a Hamiltonian where the superconducting electrons are
represented by a conventional BCS Hamiltonian and they
interact with the localized magnetic impurities via the s-d
exchange interaction. Theoretical studies of superconduc-
tive glass models that describe random arrays of Joseph-
son junctions have been performed both for classical [4]
and recently in a quantum model [5].

Our motivation in this paper is to study the inter-
play of the mechanisms that lead to spin glass ordering

a e-mail: albath@if.ufrgs.br

and BCS pair formation in a fermionic Ising spin glass
model with BCS pairing among localized fermions of op-
posite spins. We argue in the Appendix that this effective
Hamiltonian is obtained from the model of reference [3] by
tracing out the degrees of freedom of the superconducting
electrons to second order in the s−d exchange interac-
tion, when the localized spin operators are represented
by bilinear combinations of fermions. In this case, besides
the known RKKY interaction between localized spins we
obtain an exchange induced pairing interaction between
localized fermions, mediated by the superconducting elec-
trons. This model allow us to investigate the competitions
between frustration and double occupation of the sites in
a half-filling situation.

Since the introduction of the Sherrington-
Kirkpatrick [6] (SK) model to describe infinite-ranged
Ising spin glasses, a vast amount of work was devoted
to the study of analogous quantum spin glass (QSG)
models with different and interesting low temperatures
properties.

In an early seminal paper [7], Bray and Moore used
Feynman’s functional integrals formalism with a fictitious
time 0 < τ < β, β = 1

T
, to analyze the quantum
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Heisenberg spin glass model. By using the static approx-
imation to evaluate the spin-spin correlation functions,
they established the existence of a phase transition at fi-
nite temperatures. This formalism has been extended re-
cently to the study of quantum fluctuations in related spin
glass models [8–10]. The authors in references [8,9] report
on unconventional time(frequency) behaviour of the corre-
lation functions at T = 0. In a remarkable later work [10]
Grempel and Rozenberg found the exact numerical solu-
tion of Bray and Moore’s equations [7] for S = 1/2, and
they demonstrate the existence of an ordered spin glass
phase below a finite critical temperature. Also the spin-
spin correlation function Q(τ) is found to be roughly con-
stant and equal to its classical value within a range of
temperatures around the critical point, what it seems to
justify the use of the static ansatz of reference [7] at not
very low temperatures in the Heisenberg spin glass. Other
functional integral techniques have been used earlier to
study QSG models where the spin operators are repre-
sented by bilinear combinations of fermionic (anticommut-
ing) Grassmann fields, both in the anisotropic (Ising) [11]
and the isotropic (Heisenberg) [12] limits within a replica
symmetric (RS) theory.

The static approximation was used, and it turned
out to be exact, in the fermionic Ising model, while the
fermionic Heisenberg model was solved by combining the
static approximation for the order parameter with an in-
stantaneous approximation for the retarded susceptibility.

Recent work [13] demonstrated the existence of
several characteristic temperatures in both models, with
the de Almeida-Thouless [14] instability occurring at a
temperature T1 lower than the spin glass transition TSG.
In the isotropic fermionic model [12] there exists still a
lower temperature T2 < T1, at which the replica symme-
try stability is restored. The region of RS instability is
characterized by a negative entropy in the anisotropic [11]
fermionic model, while the entropy remains positive in
the isotropic model [12] but the specific heat changes sign
in the RS instability region.

The anisotropic (Ising) QSG model [11,15] deserves
some special discussion. In this particular case, the spin
operator Szi commutes with the particle number operator
nis = 0 or 1, and thus it would not be necessary to em-
ploy the functional integral formulation since the Hamil-
tonian is diagonal in occupation number operators. How-
ever, there still remains an important difference between
the fermionic and classical SK spin glass: in the quan-
tum case the diagonal component of the order parameter
in replica space is no longer constrained to unity. Conse-
quently, the susceptibility χ emerges in the problem with
an important new role and the spin glass order parame-
ter has to be determined coupled to χ. By adding to the
fermionic Ising [11,13] a term that favors BCS pairing,
the use of functional integrals becomes necessary as the
Hamiltonian does not commute with the particle occupa-
tion number operators.

There is a crucial aspect that characterizes the repre-
sentation of spin operators in Fock space, because there

are four quantum states at every site [12], two of them
non-magnetic, and the quantum statistics that controls
number occupation can induce unusual phase transitions.
In other words, the QSG frustration can be disrupted as
long as we have access with equal probability to the mag-
netic and the non-magnetic states at each site. In fact, a
recent paper [16] has reported tricritical behaviour in the
fermionic Ising QSG model, within the static approxima-
tion, by varying the electronic concentration. This raises
the question if the effects that come from the relative occu-
pation of magnetic and non-magnetic states can be prop-
erly exploited, and consequently to produce unusual phase
transitions even if the average occupation per site is kept
constant and equal to one. The main difference between
reference [16] and ours resides in the mechanism that con-
trols the magnetic moment formation on the sites. They
achieve that by varying the electronic concentration while
we have a pairing mechanism that energetically favors the
double occupation and therefore non-magnetic states in
the half-filling situation.

This paper is structured as follows: in Section 2 we
study the model derived in the Appendix and find the
thermodynamic potential, together with the saddle point
equations for the order parameters. In Section 3 we discuss
the nature of the phase transitions in the resulting phase
diagram in the T−g plane, where g is the strength of the
pairing interaction, for fixed variance of the random cou-
plings Jij . Lowering the temperature, for high values of g,
there is a line of second order transitions from normal to
the pair formation phase, that ends at a tricritical point
T = T3 and g = g3, characterized by the simultaneous van-
ishing of the two first coefficients in the Landau expansion
of the free energy [17]. From there on, the line becomes
one of first order transitions until it meets the line of sec-
ond order spin glass transitions at T = Tc. For T < Tc the
first order transition line separates the spin glass and pair
formation phases. All these results were obtained by using
the static approximation. As we discussed previously, we
expect this to be a justifiable ansatz because all the rel-
evant temperatures are of the order βJ ≈ 1 [7], and our
theory is not applicable to very low temperatures due to
the de Almeida-Thouless instability.

We reserve Section 4 for discussions and comparison
with other models and the experimental data [2].

2 General formulation

Conventional spin glass superconductors are well repre-
sented by a Hamiltonian where the conduction electrons
are described by a BCS Hamiltonian and they interact
via an effective s−d exchange term with randomly local-
ized magnetic impurities [3]. We show in the Appendix
that, when the localized spins are represented in terms of
fermions, the degrees of freedom of the superconducting
electrons can be integrated using second order perturba-
tion theory in the exchange interaction Jsd to give rise to
an effective BCS pairing interaction among the fermions,
besides the very well-known RKKY interaction among
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the localized spins. In the mean field spirit we are lead
to consider the following Hamiltonian:

H = H − µN =−
∑
ij

JijS
z
i S

z
j − µ

∑
i

∑
s=↑,↓

c†iscis

−
g

N

∑
i,j

c†i↑c
†
i↓cj↓cj↑ (1)

where the operator Szi is defined as

Szi = c†i↑ci↑ − c
†
i↓ci↓, (2)

µ is the chemical potential, c†is (cis) are fermions creation
(destruction) operators and s =↑ or ↓ indicates the spin
projection. The coupling Jij is an independent random
variable with the distribution

P (Jij) = e−J
2
ijN/2J

2√
N/2πJ2. (3)

The first two terms in the Hamiltonian of equation (1)
describe a fermionic Ising spin glass [11,13,15] while the
last term is a BCS-like pairing interaction and corresponds
to the mechanism that favors the double occupation of
sites [18].

Our ultimate goal is to reduce this problem to a
one-site problem. Functional integration techniques have
proved to be a suitable approach for disordered quantum-
mechanical many-site problems, as it has been for classical
problems [19]. Furthermore, this formulation showed to
be quite successful to describe the usual superconductive
transition with a BCS coupling [20] and in the presence of
transition metal impurities [21]. In that case, the particle-
hole transformation introduced by the use of Nambu ma-
trices within the static approximation made the problem
with a BCS coupling solvable, because it becomes a mean
field theory in momentum and frequency space. As the
static approximation is exact for the BCS problem and
is also exact for the fermionic Ising glass [11,12], we ex-
pect it to give reliable interpolation results here for finite
temperatures [10]. Our theory is not valid at very low tem-
peratures due to the de Almeida-Thouless instability, then
we are not concerned with the singular behaviour found
at T = 0 in other models [8,9].

In the Lagrangian formulation [11,19,21] the partition
function is expressed as

Z =

∫
D(φ∗φ)eA (4)

where the action A is given by

A =

∫ β

0

[∑
is

φ∗is(τ)
d

dτ
φis(τ)−H(φ∗is(τ), φjs(τ))

]
dτ.

(5)

In both expressions φ∗is(τ) and φis(τ) are anticommuting
Grassmann variables, τ is a complex time and β the in-
verse absolute temperature.

In order to apply the particle-hole transformation
within the static approximation and to make explicit our

central approximation, we work with time Fourier trans-
formed quantities. Therefore, the pairing part of the action
becomes

Apairing =
βg

N

∑
Ω

∑
ij

ρ∗i (Ω)ρj(Ω) (6)

where

ρi(Ω) =
∑
ω

φi↓(−ω)φi↑(Ω + ω) (7)

with Matsubara’s frequencies ω = (2m + 1)π and Ω =
2mπ, (m = 0, ±1, ...). In the static approximation, we
retain just the term Ω = 0 in the sum over the frequency
Ω. Hence we get for Apairing

Astpairing =
βg

4N

2∑
p=1

[∑
iω

ψ†
i
(ω)σpψi(ω)

]2

(8)

where we introduced the Nambu matrices

ψ†
i
(ω) = (φ∗i↑(ω) φi↓(−ω))

ψ
i
(ω) =

(
φi↑(ω)
φ∗i↓(−ω)

)
(9)

and the Pauli matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (10)

The spin part of the action can also be written within the
static approximation as:

ASG =
∑
ij

βJijS
z
i S

z
j (11)

where, from equation (2),

Si =
∑
ω

ψ†
i
(ω) ψ

i
(ω). (12)

Finally, the free action is expressed in terms of Nambu
matrices

A0 =
∑
i

ψ†
i
(ω) G0

−1(ω) ψ
i
(ω). (13)

where the free inverse propagator is

G−1
0 (ω) = ı ω + µ σ3. (14)

and the total action can be rebuild as A = A0 +Astpairing+
ASG. We are now able to follow the standard procedures to
get the configurational averaged thermodynamic potential
by using the replica formalism

Ω = −
1

β
lim
n→0

〈Zn〉ca − 1

n
(15)
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where the configurational averaged replicated partition
function, after averaging over Jij , becomes

Z(n) ≡ 〈Zn〉ca

=

∫
D(φ∗α, φα) exp

[∑
iαω

ψ†α
i

(ω)G−1
0 (ω)ψα

i
(ω)

+
βg

4N

∑
α

2∑
p=1

[∑
iω

ψ†α
i

(ω)σpψ
α

i
(ω)

]2

+
β2J2

2N

∑
αβ

[∑
i

Sαi S
β
i

]2
 .

(16)

The notation ψα
i

(ω) means that a replica index α =
1, 2, ..., n has been associated to each matrix element. We
introduce replica dependent auxiliary fields ηα and qαβ to
linearize the action in equation (16), and get

Z(n) =
1

ℵn

∫ +∞

−∞

∏
αβ

dqαβ

∫ +∞

−∞

∏
α

dηαRdηαI

× e
−N

[
β2J2

2

∑
αβ q

2
αβ+βg

∑
α η
∗
αηα−lnΛ(qαβ ,ηα)

]
(17)

where ηα = ηαR − ıηαI , ℵ = ( 2π
Nβ2J2 )( π

Nβg ) and

Λ(qαβ , ηα) =∫
D(φ∗α, φα) exp

[∑
α

∑
ω

ψ†α(ω)G0
−1(ω)ψα(ω)

+βg
∑
α

∑
ω

ψ†α(ω)η
α
ψα(ω) + β2J2

∑
αβ

qαβS
α
i S

β
i

 (18)

while the matrix ηα is defined as

η
α

=

(
0 ηα
η∗α 0

)
. (19)

We analyze the problem within the replica-symmetric
ansatz

qα6=β = q qαα = q + χ ηα(η∗α) = η(η∗) (20)

where q is the spin glass order parameter and χ is related
to the static susceptibility [11] by χ = χ

β
. The complex

order parameter η gives the number of particle-hole pairs
of opposite spin at each site, as is obtained extremizing
Z(n), that is, solving ∂

∂η
〈Zn〉 = 0 in equation (17) and

the corresponding equation for η∗. This yields

η =
∑
ω

〈φ∗i↑(ω)φ∗i↓(−ω)〉 = 〈c†i↑c
†
i↓〉

η∗ =
∑
ω

〈φi↓(−ω)φi↑(ω)〉 = 〈ci↓ci↑〉, (21)

where the brackets indicate both, a statistical average and
average over disorder.

The sums over α in the spin part of the action produce
again quadratic terms that can be linearized by introduc-
ing new auxiliary fields, with the result:

Λ(q, χ, η) =

∫ +∞

−∞
dz
e
−z2

2

√
2π

[∫ +∞

−∞
dξ
e
−ξ2

2

√
2π
I(ξ, z)

]n
(22)

I(ξ, z) =

∫
D(φ∗, φ)e

∑
ω ψ
†(ω)G−1(ω)ψ(ω) (23)

where the matrix G−1(ω) is given by:

G−1(ω) =

(
iω + λ(z, ξ) + βµ βgη

βgη∗ iω + λ(z, ξ)− βµ

)
(24)

and

λ(z, ξ) = βJ
√

2qz + βJ
√

2χξ. (25)

In equation (23), the differential D(φ∗, φ) stands for∏
ω

∏
s dφ

∗
s(ω)dφs(ω) and the functional integral over

Grassmann variables separates into a product of integrals
over exponentials of quadratic forms, that can be readily
performed with the result [19]:

lnI(ξ, z) =
∑
ω

ln | G−1 |=
∑
ω

ln[(ıω + λ(z, ξ))2

− β2µ2 − β2g2 | η |2]. (26)

To perform the frequency sum in equation (26) one should
have in mind that the Nambu formalism introduces a
particle-hole transformation in the fermions of spin down.
Then from equation (14, 16) we have that

1

N

∂Ω

∂µ
= 〈c†↑c↑〉 − 〈c↓c

†
↓〉 = 〈n↑〉+ 〈n↓〉 − 1, (27)

and the converging factors in the frequency sums should
be adjusted to these prescriptions, with the result

I(ξ, z) = cosh(λ(z, ξ)) + cosh(βµ′) (28)

where

µ′ =
√
µ2 + g2η2. (29)

Not giving rise to confusion, from now on we write η in
place of |η|. Introducing equation (28) in equation (22)
and using equation (17) we finally obtain for the thermo-
dynamic potential in equation (15) at the saddle point:

βΩ

N
=

1

2
β2J2χ(2q + χ) + βgη2

−

∫ +∞

−∞
Dzln

[
eβ

2J2χcosh(βJ
√

2qz) + cosh(βµ′)
]
.

(30)

where Dz = dz e
−z2

2√
2π

. We want, on the average, to insure

the half-filling situation of one-electron per site, thus fixing
µ = 0 in equations (28, 30). The saddle point equations
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for the order parameters that follow from equation (30)
are:

χ =

∫
Dz

cosh(βJ
√

2qz)

cosh(βJ
√

2qz) + e(−β2J2χ)cosh(βgη)
− q

(31)

q =

∫
Dz

sinh2(βJ
√

2qz)

[cosh(βJ
√

2qz) + e(−β2J2χ)cosh(βgη)]2
(32)

η =
1

2

∫
Dz

e(−β2J2χ)sinh(βgη)

cosh(βJ
√

2qz) + e(−β2J2χ)cosh(βgη)
· (33)

The replica symmetric solution described here is unstable
at low temperatures, when the de Almeida-Thouless [14]
eigenvalue λAT becomes negative. The calculation of λAT
in this model follows as in a previous work [13], with the
result:

λAT = 1− β2J2

×

∫ ∞
−∞

Dz
[1 + e(−β2J2χ)cosh(βgη)cosh(βJ

√
2qz)]2

[e(−β2J2χ)cosh(βgη) + cosh(βJ
√

2qz)]4
·

(34)

For the entropy we obtain:

S

K
=
−3

2
β2J2χ(2q + χ)− 2βgη2

+

∫ +∞

−∞
Dzln[eβ

2J2χcosh(βJ
√

2qz) + cosh(βgη)].

(35)

We show in Figure 5 the behaviour of λAT and S/K as
a function of the temperature for a value of g > gc. We
observe a discontinuity in the derivative of the entropy
from the normal to pairing phase typical of the second
order transition. For lower temperatures λAT and S/K
become negative due to replica symmetry breaking.

A detailed discussion of the numerical solutions of the
saddle point equations, as well as the Landau expansion of
the thermodynamic potential in equation (30) in powers
of order parameters q and η is performed in Section 3.

3 Phase diagram and tricritical point

The numerical analysis of the equations for the order pa-
rameters q, η and χ in equations (31–33) allow us to build
a phase diagram (temperature versus pairing coupling g)
where three regions can be identified (see Fig. 1):

i) For high T and small g, we get a normal phase with
no long range order where q = 0 and η = 0.

ii) Enhancing the pairing coupling g, one gets a phase
transition at g = gc(T ) where there is a new order
corresponding to the spin pairing on the sites. In terms
of the order parameters, that means η 6= 0 while q = 0.

iii) As one lowers the temperature, for g < gc(Tc), the
model exhibits a phase transition at T = Tc where
q starts to grow continuously but with η still equal

0.0 5.0 10.0 15.0 20.0
g/J

0.0

1.0

2.0

3.0

T/J

NORMAL PHASE

PAIR PHASE
SG PHASE

Fig. 1. Phase diagram as function of temperature and pairing
coupling g/J . Solid lines indicate second order transitions while
the dotted line indicates a first order transition. The tricritical
point T3, g3 is shown in detail in the diagram. The points where
λAT becomes negative are represented by the dashed line.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T

0.0

0.5

1.0

Fig. 2. Temperature behaviour of q (solid line), and χ = χ
β

(dashed line) for g = 0.5J < gc. Here η = 0.

to zero as shown in Figure 2. The behaviour of the
order parameter q and the susceptibility χ = βχ
shows a second order transition from a normal phase
to a spin glass phase. Actually, that situation has
been already analysed in [11] where an expansion of
equations (31, 32) in powers of q for η = 0 gives
Tc = 0.9570J .

The nature of the transition line given by the equation
g = gc(T ) is far more complex. If T > Tc, the numer-
ical analysis shows that η grows continuously from zero
as one crosses the transition line (see Fig. 3). This result
suggests that we get a second order transition. However,
when T < Tc, the numerical solution of the order pa-
rameter in Figure 4 seems to indicate that the transition
line becomes first order at some point. To investigate this
question further we perform a Landau expansion [22] of
the thermodynamic potential βΩ in equation (30) in pow-
ers of the two order parameters η and q, that define the
symmetries of the pairing and the spin glass phases, while
χ is taken at the saddle-point value in equation (31). We
find it is more convenient to start expanding in powers
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6.70 6.75 6.80
0.0000

0.0005

0.0010

0.0 2.0 4.0 6.0 8.0 10.0
g/J

0.0

0.2

0.4

0.6

0.8

Fig. 3. Dependence of the order parameter η (dotted line)
and the parameter χ (dashed line) with the coupling g/J for
T > Tc, where T = 1.5J . We show in detail the continuous
behaviour of η around gc.

0.0 5.0 10.0
g/J

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Dependence of the order parameters η (dotted line), q
(solid line), and the parameter χ (dashed line) with the cou-
pling g/J for T < Tc, where T = 0.75J . At the transition point
both η and q have discontinuous behaviour indicating a first
order transition.

of q and we write from equation (30):

βΩ =
3∑
k=0

fk(η, χ, T )qk (36)

where χ(q, η, T ) is the solution of the saddle point equa-
tion

3∑
k=0

∂

∂χ
fk(η, χ, T )qk = 0. (37)

We look for a solution of equation (37) also in the form of
a series

χ = χ0 + χ1q + χ2q
2 (38)

with the result that χ0 is given by

1

β2J2

∂

∂χ
f0(η, χ0, T ) = χ0 −

1

D
= 0 (39)

where

D = 1 + e(−β2J2χ0)cosh(βgη) (40)

and

χ1 = −

[(
∂

∂χ
f1

)(
∂2

∂χ2 f0

)−1
]
η,χ0,T

, (41)

χ2 = −

[(
∂

∂χ
f2 + χ1

∂2

∂χ2 f1 +
1

2
χ2

1

∂3

∂χ3 f0

)
×

(
∂2

∂χ2 f0)−1

)]
η,χ0,T

. (42)

Introducing equation (38) into equation (36) by expanding
the fk’s in powers of q, we finally obtain after some lengthy
calculations the compact result:

βΩ =
β2J2χ2

0

2
− ln(eβ

2J2χ0 + 1) +A1η
2 +A2η

4

+A3η
6 −B1q

2 −B2q
3 (43)

where

A1 =
1

2!
(βg)2

[
2

βg
−

1

D̃0

]
,

A2 =
1

4!
(βg)4

[
3

D̃2
0

−
1

D̃0

]
, (44)

A3 =
1

6!
(βg)6

[
−

1

D̃0

+
15

D̃2
0

−
30

D̃3
0

]
,

B1 = β4J4

[
1

2β2J2
−

1

D2
0

]
B2 =

2

3

β6J6

D3
0

(3D0 + 1). (45)

D̃0 = eβ
2J2χ0D0 = eβ

2J2χ0 + 1. (46)

First we notice that the correct solution of equation (37)
implies the exact cancelation of the term linear in q in βΩ.
The order parameter η and q minimize and maximize [6],
respectively, βΩ in equation (43). We obtain then that the
normal paramagnetic phase is characterized by A1 > 0,
B1 > 0; the spin glass phase with q 6= 0, η = 0 by A1 > 0,
B1 < 0; and the pairing phase with q = 0, η 6= 0 by
A1 < 0,B1 > 0. Lowering the temperature for small values
of g, B1 changes sign first at Tc = 0.9570J and as B2 > 0
this is a second order transition line from paramagnetic to
spin glass phase that was analyzed in detail elsewhere [11].
For g > gc(T ) and T > Tc we have A1 < 0, B1 > 0, and
the line A1 = g−gc(T ) = 0 is a second order transition line
if A2 > 0. A quick glance at A2 shows that it is positive
at high temperatures and negative at low temperatures,
then we identify the point g3, T3 where A1 = A2 = 0 as a
tricritical point, in agreement with the known criteria [13].
At this point, a line of second order transitions becomes
a first order transition line. From equations (39, 43) we
obtain T3 = 0.9807J , g3 = 5.8843J . The expansion of A1

around the tricritical point gives for the critical line:

A1 = −0.0566(g− g3) + 0.02575(T − T3) = 0 (47)
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Fig. 5. The Almeida-Thouless eigenvalue (solid line) and en-
tropy (dashed line) for g = 6.2J .

and η ≈ (TP − T )1/2 for T3 < T < TP , where TP =
T3 + 2.2(g − g3). For T < T3 and g < g3, the transition
from the pairing to the spin glass phase becomes a first
order transition. Tricritical behaviour has been found pre-
viously [16] in the fermionic Ising spin glass model with
charge fluctuation, and a discussion of the relation be-
tween this model and ours is left for Section 4.

We show in Figure 5 the behaviour of λAT and S/K
as a function of the temperature for a value of g > gc. We
observe a discontinuity in the derivative of the entropy
from the normal to pairing phase typical of the second
order transition. For lower temperatures λAT and S/K
become negative due to replica symmetry breaking.

4 Conclusions

We study in this paper the interplay of the mechanisms
that leads to spin glass ordering and BCS pair forma-
tion in a soluble mean field model Hamiltonian for a
fermionic quantum spin glass with a BCS pairing between
local fermions. As we show in the Appendix, this model
would describe the spin dynamics of a superconductive
spin glass [2,3] and allow us to study the role of the pair-
ing mechanism as control of the site occupation and the
local moment formation. Comparing our results with pre-
vious work that exhibit tricriticality [15,16], we can see
that the pairing order parameter η enters in an effective
chemical potential µ′ in equation (29), and our equations
would reduce to theirs if we make g = 0, µ 6= 0. As we are
insuring here half-filling on the average, we get µ′ = gη
and by varying g we change the site occupation by favour-
ing doubly occupied states.

As a result we obtain the phase diagram in Figure 1
where we observe a normal paramagnetic (NP) phase at
high temperatures with q = η = 0. By lowering the tem-
perature for g < gc(Tc) we encounter a second order tran-
sition line from the NP phase to the SG (spin glass) phase
at Tc = 0.9570J . For g > gc(Tc) the second order tran-
sition is from the NP phase to the PAIR ( pairing for-
mation) phase if T3 < T < TP (g). At T = T3, g = g3

there is a tricritical point where the pairing transition be-
comes first order. This point is almost indistinguishable in
Figure 1 from the point T = Tc, g = gc. For T < Tc the
line gc(T ) becomes a first order transition line separating
the SG and PAIR phases. The phase diagram obtained in
Figure 1 is in good qualitative agreement with the experi-
mental results of reference [2] for GdxTh1−xRU2 samples,
by assuming that the ratio J/g is proportional to the Gd
concentration. This assumption is reasonable, as we show
in the Appendix that the effective value of g is propor-
tional to the number of superconductive pairs, that for a
given temperature decreases drastically with the concen-
tration of magnetic impurities, leading to an increase in
J/g.

To conclude, we studied a model for a fermionic SK
spin glass with BCS pairing among the local fermions that
is soluble by reduction to a one site problem. Although this
model originates in the description of the spin dynamics
of conventional spin glass superconductors, we hope that
these results may be also relevant for the study of strongly
correlated fermions systems through the localized one site
approximations [23]. It is possible to extend the analysis
of reference [10] for the study of the time correlation func-
tions in the present problem, but it will be the subject of
a future work.

We are grateful to W.K. Theumann for relevant comments
and we thank P. Pureur for discussions. S.G. Magalhães ac-
knowledges the hospitality of the Instituto de F́ısica, UFRGS,
where part of this work was performed. This work was partially
supported by CNPq (Conselho Nacional de Desenvolvimento
Cient́ıfico e Tecnológico) and FINEP (Financiadora de Estudos
e Projetos).

Appendix

Conventional spin glass superconductors are usually repre-
sented by a system of conduction electrons with BCS cou-
pling interacting with localized spins [3]. Using Gorkov’s
decoupling scheme the Hamiltonian is:

Halloy =
∑
ks

(εk − µ)a†ksaks

−
∑
k

[∆ka
†
k↑a
†
−k↓ +∆†ka−k↓ak↑]− Jsd

∑
i

Si.si

(A.1)

where Si is the magnetic moment localized at the random
site Ri and si is the local spin density of the conduction
electrons

si =
∑
kk′

∑
ss′

ei(k−k′).Ria†ksσss′ak′s′ , (A.2)

where σss′ indicates the elements of the vector Pauli ma-
trices and a†ks(aks) are the usual creation (annihilation)
operators for superconducting electrons. The order param-
eters ∆k, ∆†k are to be determined self-consistently from
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the equations of motion, but here we consider them to be
phenomenological parameters. In this paper we choose to
represent the localized moments by a bilinear combination
of fermion operators [12]

Si =
∑
ss′

c†isσss′cis′ (A.3)

as we did in equation (2).
The partition function for the superconducting alloy

may be written in terms of functional integrals as we did
in equations (4, 5):

Zalloy =

∫ ∏
is

D(φ∗is, φis)

∫ ∏
ks

D(φ∗ks, φks)e
Aalloy (A.4)

where the action is now given by

Aalloy =

∫ β

0

[∑
is

φ∗is(τ)
d

dτ
φis(τ) +

∑
ks

φ∗ks(τ)
d

dτ
φks(τ)

−Halloy(φ∗(τ), φ(τ)] dτ
(A.5)

and we introduced the Grassmann fields φ∗ks, φks for the
conducting band. Using the Nambu formalism as we did
in Section 2 we may write the partition function

Zalloy =

∫ ∏
is

D(φ∗is, φis)e
A0

∫ ∏
ks

D(φ∗ks, φks)e
ABCS+Asd

(A.6)

where A0 is the action for non-interacting fermions given
in equation (13) and ABCS is the action for the supercon-
ducting electrons:

ABCS =
∑
kω

ψ†
k
(ω)Gk

−1(ω)ψ
k
(ω) (A.7)

where similarly to equations (9, 24)

ψ†
k
(ω) = (φ∗k↑(ω) φ−k↓(−ω)) ψ

k
(ω) =

(
φk↑(ω)

φ∗−k↓(−ω)

)
(A.8)

G−1
k (ω) =

(
iω − β(εk − µ) β∆k

β∆∗k iω + β(εk − µ)

)
. (A.9)

The s−d exchange part of the action is given by

Asd = −Jsdβ
∑
i

∑
Ω

Si(−Ω).si(Ω) (A.10)

where from equations (A.2, A.3)

Si(Ω) =
∑
ss′

∑
ω

φ∗is(ω +Ω)σss′φis′(ω) (A.11)

si(Ω) =
∑
ss′

∑
kk′

∑
ω

ei(k−k′).Riφ∗ks(ω +Ω)σss′φk′s′(ω).

(A.12)

We indicate by ω = (2n+ 1)π and Ω = 2nπ the fermionic
and bosonic Matsubara frequencies, respectively. When we
are interested in the localized spins dynamics, the conduc-
tion electrons degrees of freedom in equation (A.6) may
be integrated out to second order perturbation theory in
Jsd to give the result:

Zalloy =

∫ ∏
is

D(φ∗is, φis)e
A0+Aeff (φ∗is,φis) (A.13)

where

Aeff (φ∗is, φis)=−
1

2
(βJsd)

2
∑
Ωαβ

∑
ij

V αβij (Ω)Sαi (Ω)Sβj (−Ω)

−
1

2
(βJsd)2

∑
Ω

∑
ij

Wij(Ω)[S+
i (Ω)S−j (Ω)+S−i (Ω)S+

j (−Ω)]

(A.14)

and the dynamic interactions V αβij (Ω), Wij(Ω) are ob-

tained from the correlation functions 〈Sαi (Ω)Sβj (−Ω)〉. By
performing the frequency sums as indicated in Section 2
and approximating ∆k ≈ ∆, we obtain for the static part
with Ω = 0:

V αβij (0) = δαβ
∑
q

eiq.(Ri−Rj)
1

β

∑
k

n(k + q)− n(k)

ε(k + q)− ε(k)

(A.15)

Wij(0) =
|∆|

β

∑
q

eiq.(Ri−Rj)
∑
k

B(k) −B(k + q)

E2(k + q)−E2(k)

(A.16)

where

n(q) = [1 + eβ(ε(q)−µ)]−1

B(k) =
|∆|

2E(k)
tanh

(
βE(k)

2

)
E(k) = [(ε(k)− µ)2 + |∆|2]

1
2 . (A.17)

The effective interaction Vij in equation (A.15) was calcu-
lated to lowest order in |∆| and it represents the familiar
RKKY interaction [24] that is responsible for spin glass
ordering. The interaction Wij is of a different character
and it represents the coupling induced by the exchange
of superconducting electrons. The function B(k) is the

matrix element [25] of the pairing operator c†k↑c
†
−k↓, and

since pairing interactions smooth out the jump in the sin-
gle particle occupation number n(k) we can approximate

B(k) = |∆|
2E(k) at low temperatures, what gives in equa-

tion (A.16)

Wij(0) ≈
1

2β

∑
q

eiq.(Ri−Rj)
∑
k

|∆|2

E(k + q)E(k)

×

[
1

E(k + q) +E(k)

]
· (A.18)
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As the last sum in equation (A.18) is very weakly depen-
dent on q it can be approximated by its value when q = 0,
what gives

Wij(0) ≈
1

4β

∑
k

|∆|2

E3(k)
δij . (A.19)

Introducing equations (A.15, A.19) in equation (A.14) we
obtain for the static part of the interaction

Asteff (φ∗is, φis) ≈ −
∑
ij

Jij(RKKY )Si(0).Sj(0)

− g
∑
i

S+
i (0)S−i (0). (A.20)

We argue that the last term in equation (A.20) is the
static part of the action corresponding to the Hamiltonian

HI = g
∑
i c
†
i↑ci↓c

†
i↓ci↑ that within Gorkov’s formalism

would give rise to terms −g[∆†l
∑
i ci↓ci↑ + ∆l

∑
i c
†
i↑c
†
i↓],

what ultimately justifies our choice of Hamiltonian in
equation (1).
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